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1. Introduction 

Cluster analysis is, at present, one of the most popular methods used for 
processing data that represent set of objects (ANDENBERG 1973; 
HARTIGAN 1975; MURTAGH and HECK 1987). In very general terms, the 
purpose of cluster analysis is to group data according to the principle of 
similarity.  

In the context of this paper the notion of similarity embodies a measure in 
n-dimensional space (a distance between points). This notion is nontrivial, 
because the difficulty surfaces when one has to choose weights for the 
attributes representing an object. For example, how to weight between the 
length of an object and its electrical conductivity? However, for the points of 
a cluster on a plane this is not a difficult problem to resolve: grouping of 
points by similarities is one of the traditional themes extensively investigated 
by the Gestalt psychologists (ANDENBERG 1973; HARTIGAN 1975; 
MURTAGH and HECK 1987; TOUSSAINT 1980; MATULA and SOKAL 
1980). When objects are points on a plane, our psychological perception of 
these objects seems to agree with the Euclidean measure (where all 
attributes have the same weight). We note thus, that in the case of 
clustering on a plane, the object (a visual object drawn on the sheet of 
paper) and its representation (the point on a plane with a given system of 
Cartesian coordinates) coincide. In the multidimensional space, the point 
represents the object under study, and the coordinates are its attributes. 

For simple cluster shapes, and for relatively uniform cluster densities, as 
well as for clusters that are widely separated (as compared to the average 
distance between points in a given cluster) clustering algorithms provide 
good results if the number of clusters is known a priori. We note that the 
precise number of clusters is known when the nature of the objects (that is 
the domain to which the objects belong) and the nature of the clusters are 
known. Clustering problem for geological data may serve as an example. 
For geological data, the data from a specific geological region may identify 
lithology of different layers, and may include, for example, limestone, 
sandstone, and carbonates. Therefore, if we are confronted with a set of 
objects, and we know to which clusters they might possibly belong, for 
specific clusters we may identify at least some of the representative objects. 
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Thus, if we know the number of clusters and their representative objects, 
clusters become classes - now we have a pattern recognition problem. 

2. The Clustering Problem 

We note that when the number of clusters is a part of the clustering 
algorithm, in reality this number is only a guess. Consequently we posit that 
the precise clustering problem is this: distinguish between the disparate 
clusters when the number of clusters is not known a priori. The work of 
OSBOURN and MARTINEZ (1995) addresses exactly this issue. A key 
contribution of this study is the introduction of a visually-empirical region of 
influence (VERI) shape which can correctly treat a wide variety of clustering 
problems. The notion of the VERI shape is based on the psychophysical 
studies which have attempted to quantify human visual judgments of 
clusters (TOUSSAINT 1980a). The OSBOURN and MARTINEZ method 
computes clustering based on the local k-dimensional neighbors of each 
point, and thus handles arbitrary number of clusters and the arbitrary global 
cluster shapes. The same VERI shape can be used for a variety of 
examples of clusters. It is important to note, however, that the OSBOURN 
and MARTINEZ method requires the input of k-dimensional data. 

The clustering problem, at least for the 2-dimensional case, is a Gestalt 
problem: from the psychological point of view the problem requires a holistic 
approach. What this means is as follows: the decision about each point in a 
cluster depends (in general) on the distribution of all points in the image of 
the cluster. We propose to generalize such an approach to n dimensions. 

3. The DD Algorithm and the Clustering Problem 

In a previous article (GUBERMAN 1983) we describe in detail an 
algorithm (referred to as the DD algorithm) that can be put to use when 
performing automated image processing, and which employs the Gestalt 
approach. We propose to apply this algorithm to the cluster analysis 
problem. In Appendix we offer brief description of the DD algorithm. 
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Figure 1. Applying DD algorithm to the set of points on a plane 

 

The key aspect of the DD algorithm is the generation of the function n(r). 
In brief, the algorithm works as follows: consider any given set of points on a 
plane (for example, those shown in Figure 1a). Let each point be the center 
of a circle of a radius r. We define Fr(x,y) to be Fr(x,y)=1 within each circle of 
radius r, and Fr(x,y)=0 outside. In Figure 1 the areas where Fr(x,y)=1 are 
shaded black. If r is sufficiently small (Figure 1a), the number of connected 
areas n, where Fr(x,y)=1 is equal to N, where N is the number of points on 
the image. As r increases, some circles begin to intersect, and the number 
of separate regions for which Fr(x,y)=1 decreases (Figure 1b). When circles 
become bigger, the number of these separate regions continues to 
decrease (Figure 1c). The graph of function n(r) is shown in Figure 2.  

Figure 2. n(r) for the set of points shown in Figure 1a 

 

We note that n(r) declines quickly as r increases from r0 to r1: circles 
around the points of one of the clusters fuse into a coherent set. At r=r1 (see 
Figure 1b) all points of this cluster fuse into one set and n(r) remains 
constant until r increases to r2. For r>r2, n(r) again declines quickly: second 
cluster of points had fused into one coherent set (see Figure 1c). Thus we 
note that the appearance of the decline between r2 and r3 indicates the 
existence of a second cluster. At that point (r=r3 ) n(r3)=2 (there are only two 
connected areas). With increasing r the two clusters merge and n(r) 
becomes equal to 1. We also note the following about n(r): the steeper the 
decline and larger the step, the more reliable the prediction that there are 
two clusters. What happened here is this: the analysis of the graph n(r) 
enabled us to separate a given set of points appearing in Figure 1a into two 
clusters - in agreement with our visual perception of this image.  

We also note that function n(r) is completely defined by a finite number of 
points on r axis. These specific points correspond to the values of r for which 
sets of circles merge. Between these points function n(r) is constant. To 
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apply the algorithm one can calculate all distances between initial points, 
arrange them in increasing, order and calculate n(r) for these points only.  

For a set of randomly and uniformly distributed points, like those shown in 
Figure 3a, corresponding function n(r) is illustrated in Figure 3b. For a set of 
points as those in Figure 3a it is clear that n(r) will decline gradually and 
does not contain any steps.  

Figure 3. An example of uniformly and randomly distributed set of points (3a), and the 
corresponding n(r) function (3b) 

 

If we were to add noise to the set of points shown in Figure 3 (see Figure 
4a) our visual perception of the cluster structure will not be apparent. To 
discern the cluster we will go through the steps prescribed by the DD 
algorithm. Thus for the example depicted in Figure 4, the form of n(r) is like 

that shown in Figure 4d. 
Figure 4. An example of a set of points with noise (4a), the outcome of the application of the 
algorithm (4b and 4c) and the resultant n(r) (4d)  

 

We posit that the presence of a series of steps on n(r) establishes formal 
representation of the fact that dividing the points of the image into separate 
clusters is meaningful. The more step-like n(r), the more separate are the 
clusters (that is, the more organized the initial image). It should be noted that 
the degree of organization of a given function is understood in the 
GELFAND-TSETLIN sense: the organization of a function with a large 



 Guberman & Wojtkowski, Clustering Analysis as a Gestalt Problem 147 

number of variables is describable by a small number of parameters 
(GELFAND and TSETLIN 1966). Normalized derivative of the function n(r) 
represents distribution of distances between “neighboring” points. The 

entropy of that distribution can serve as a measure of organization of the 
initial image. To calculate the normalized derivative the function n(r) first has 
to be smoothed (for example, by averaging). Then the derivative of the 
smoothed function s(r) can be calculated. In the case of randomly distributed 
points (Figure 3a) the function n(r) is represented in the Figure 5a (see also 
Figure 3b). s(r) is shown in Figure 5b, and its derivative S’(r) is shown in 
Figure 5c. To normalize S’(r) one has to change the scale of that function so 
that the area under the curve S’(r) will be equal to 1. Now, for a case of two 
clusters (see also Figure 1), n(r) is shown in Figure 5d. s(r) is in Figure 5e, 
and its derivative S’(r) in Figure 5f .  
Figure 5. An example of n(r), s(r) and S'(r) for the randomly and uniformly distributed points (4a 
through 4c), and for two clusters (4d through 4f). 

 

The entropy of S’(r) is E={S’(r)lnS’(r)dr}. That function reaches its 
maximum when S’(r) is a constant. It reaches its minimum when S’(r)=(r0 ), 
where (r) is a delta-function (which means that S’(r) is concentrated in one 
point, r0). Correspondingly, when there are no clusters (see Figure 3a), n(r) 
and s(r) will slowly decline (Figure 5a and Figure 5b). S’(r) will vary little 
(Figure 5c), and the entropy E will be large (close to 1). In the case of two 
apparent clusters (see Figure 1a), S’(r) will contract to two separate short 
intervals (see Figure 5f), and the entropy E will be small (close to 0). For 
clusters, as shown in Figure 4a, E will be between 0 and 1. Therefore 
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entropy E can serve as a measure of clustering of a given data. We thus 
posit that the DD algorithm can be applied to a weakly expressed (fuzzy) 
cluster. Moreover we are also able to resolve questions such as these: 
Which points of the cluster are border points? How to separate connected 
clusters? 

4. Border Points and Separation of Connected Clusters 

Now, let us ponder situation shown in Figure 6. We have established that 
the cluster can be described by our algorithm for which r=r’ (recall that r’ is 
the radius of the circle constructed so that the last remaining separate point 
of the cluster becomes part of the cluster). All circles in Figure 6b have 
radius equal to r’. Figure 6c depicts the area occupied by the cluster. This 
area is defined as a sum of all circles of radius r’ build around all points that 
belong to the cluster (plus all interior regions).  

The border of the area occupied by the cluster consist of arcs of radius r’ 
(Figure 6d). Each of these (border) arcs belongs to a circle surrounding a 
specific point of the cluster. Such a point we will call a border point. It is clear 
that border points exhibit what we may call a different “degree" of belonging 
to the borderline”. We may call this a degree of “borderiness”. Some border 
points might be located on the very edge of the cluster (as illustrated by 
identified as point 1 in Figure 6d); a big part of the circle for this point 
belongs to the borderline. Some border points might be located a bit deeper 
in the body of the cluster; a small part of the circle for this point belongs to 
the borderline. Thus, for a given border point the “degree of borderiness” 
can be measured by the value of the arc exposed to the border: Arc/2*pi. 
For example, the “degree of borderiness” for the point identified as point 1 in 
Figure 6e is 2/3 for the part of the circle included in border (solid part of the 

circle in Figure 6e). 1/3 of the circle belongs to the inner part of the cluster 
area (dashed line). 
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Figure 6. Illustration of the steps taken when finding border points. The set of points (6a); 
circles of radius r' around the points, when all circles merge (6b); the characteristic function 
(shown in black) (6c); border of the area shown in 6c (6d); border points (6e) 

 

We recall that in discrete geometry, resolved on a regular grid, operators 
of erosion and expansion are useful when processing black-and-white 
images. For example, the erosion operator on 2-dimensional grid deletes all 
border points. We point out that the introduction of the notion of “border 
points,” as defined above, allows us to expand the use of these operators to 
irregular grids.  

 

Now we are ready to explain how we identify clusters linked by a bridge. 
Such a situation is illustrated in Figure 7. 

Figure 7. The initial set- two clusters linked by a bridge (7a); the border line and border points 
(7b); set of inner points - initial set after deleting the border points (7c); inner points surrounded 
by circles of radius r' (7d); expanded area - includes some previously deleted points, located at 
distance <=r' from circles shown in d (7e); final solution: two found clusters (7d) 

 

The steps we will take are these: 

1. Apply DD algorithm for cluster analysis. Determine from n(r) the value 
of r for which the growth of the cluster is completed (r=r1). Thus an 
explicit cluster is found. 

2. Mark all border points (as in Figure 7b). 
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3. Apply the erosion operator. That is, delete all border points (as in 
Figure 7c). 

4. Again, apply DD algorithm. 

5. If applying DD algorithm reveals two clusters (as in Figure 7d) proceed 
to step 6, if not, return to step 1. 

6. Determine r=r’ so that n(r’)=2, i.e. all points are cleaved into two 
clusters. Resolve each cluster’s area and its border (as in Figure 7e). 

7. Apply expansion operator. That is, add to the identified clusters only 
these border points that were eliminated by the erosion operator in step 
3. These border points are located closest to the clusters, that is, at a 
distance less then r’ (as in Figure 7e). We have the final solution (as in 
Figure 7f).  

8. If at least one of the border points of the initial set of points (marked at 
step 2) is now included in one of the clusters- we are done. If not – we 
return to step 7.  

Thus, we divided the set of points into two clusters and a bridge (see 
Figure 7f). Now, to further illustrate the performance of DD algorithm, we 
use cluster patterns introduced by OSBOURNE and MARTINEZ (1995). 
This set of patterns illustrates a variety of visually “obvious” clusters that, as 
a group, are hard to define in simple terms (see Figures 8 and 10). For all 
cases represented in Figure 8, function n(r) is similar in appearance (see 
Figure 9). 

 
Figure 8. Examples of possible kinds of clusters (based on TOUSSAINT 1980a) 
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Figure 9. n(r) for examples shown in Figure 8 

 

However, pattern illustrated in Figure 10, yields function n(r) of another 
type (see Figure 11). For n(r) in Figure 11 two steps are clearly in evidence. 
The curve drops quickly as r increases from r0 to r1. This is due to the fact 
that the circles around the points of the cluster on the right fuse into one set. 
The existence of the second step on the curve (from r1 to r2) reflects the fact 
that the smallest distance between the points of the cluster on the left is 
about two times larger than the largest one for the cluster on the right (r1). 
Thus, the presence of this step on the curve is an evidence of the existence 
of at least one cluster. 

Figure 10. A special case of two clusters Figure 11. n(r) for example in Figure 10 

 

The decline of n(r) between r3 and r4 occurs because the circles around 
the points of the cluster on the left are merging. At r=r3 all circles for the 
points of the cluster on the left merge into one set. The last step of n(r) 
terminates at r=r4, when two clusters merge, and n(r) drops from 2 to 1. 
Therefore, the existence of a step on n(r) between r2 and r3 is an evidence of 
the existence of the second cluster. We posit that the longer the steps and 
sharper the decline, the more certain the conclusion that two clusters exist. 
We recall that the longer the steps and sharper the decline of the function 
n(r), the higher the value of entropy E (measure of clustering), analogous to 
our psychological impression of the existence of clusters. 

We now note that for repeating images as those shown in Figure 12, 
function n(r) is extremely simple. For these types of images the distances 
between all points in all clusters are equal. The distances between clusters 
are equal as well. Thus function n(r) drops first from N to the number of 
clusters and the second time to n=1 when all clusters merge (see Figure 
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13). 

 
Figure 12. Some examples of multiple clusters  
 

Figure 13. n(r) for multiple clusters 
shown in Figure 12 

 

5. Cluster’s Environment and the Case of a Single Cluster 

Now, let us examine the case of a single cluster. We note that each 
example of clustering problem can be represented in certain environment. 
Most often this representation is rendered on a sheet of paper, or in a frame, 
or in a free space between the text. What is most important here is this: 
depending on the spatial depiction (environment), the same set of points can 
be considered a cluster (see Figure 14) or not a cluster (see Figure 15) and 
that difference in perception reflects a fundamental point of Gestalt 
psychology. We wish to emphasize here that this difference is manifested in 

the form our function n(r) takes. 

Figure 14. An example of set of points in a frame  Figure 15. The same set of points 
as in Figure 14 but in a different 
frame 

 

The reason is this: in reality expanding circles of radius r have a natural 
limit when they fill up allotted space (the sheet of paper, or the space inside 
the frame). Thus function n(r) for set of points shown in Figure 14 is the one 
illustrated in Figure 16. For the set of points shown in Figure 15, n(r) is 
shown in Figure 17. Graph of n(r) in Figure 16 has a large drop before r=r1 
and a step appears as well. This bespeaks the presence of at least one 



 Guberman & Wojtkowski, Clustering Analysis as a Gestalt Problem 153 

cluster. In Figure 17 there is a drop in n(r), but no discernible step – this 
indicates the absence of a cluster in Figure 15, in agreement with our visual 
perception. 

Figure 16. n(r) for the set shown in Figure 14 Figure 17. n(r) for the set shown in 

Figure 15 

 

In summary, the entire cluster analysis procedure takes these two steps: 

1. Apply the DD algorithm; 

2. If you succeed in finding clusters, you are done. If you do not succeed, 
apply the ‘erosion’ operator (delete the border points) and return to step 1. 
When the set of points becomes empty, you are done. 

 

Appendix  

In this Appendix we describe an algorithm that attempts to model the 
ability of our visual perception to neglect the details of a picture. For this 
reasons the algorithm has been named “Damn-the-Details” (DD) method. 
Let us start with one-dimensional image – a curve on a plane. The curve y[x] 
(see Figure Ap1a) intersects the axis X at points x0, x1, …, xN.  

This set of points (nil points of the function y[x]) is a rough description of 
the curve that contains information about points at which the sign of the 
function y[x] changes, but disregards the value of the divergence of y[x] from 
0. This rough description may be represented as function y0[x]=sign(y[x]) 
(see Figure Ap1b), which changes its sign at points x0, x1, …, xN and 
assumes constant values +1 or –1. The number of intervals between nil 
points for the function y0 [x] is equal to N (as well as for the initial function 
y[x]). Now, let us find the shortest of these intervals. Let this be the interval 
[x k, xk+1] with the length l1. Let us now perform the operation of eliminating 
the given interval. For this we exclude the boundaries of this interval (x k and 
xk+1) from the set of nil points. Now in the place of three intervals [x k-1, xk], [x 

k, xk+1], and [x k+1, xk+2] one interval is formed [x k-1, xk+2] with the constant 
sign equal to the sign of y0 [x] at the first of these three intervals [x k-1, xk]. 
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Therefore we now have function y1[x] (see Figure Ap1c). Now, let us apply 
the operation of eliminating the shortest interval to the new function y1[x]. 
The length of that interval will be l2 (l2 >= l1). Let us continue in the same way 
until all the intervals between the nil points have been eliminated. 

 

Figure Ap1. Calculating n(l) for y[x].  
a: initial curve y[x]; b: quantized curve y0 [x]; c: y0 [x] after deleting the smallest 
interval; 
d: y0 [x] after deleting all intervals <l0 

 

Now let us construct function n(l), where n(l) is the number of intervals 
remaining after eliminating, step by step, all intervals with the length less or 
equal to l. Function n(l) is equal to N at l=0, it decreases discontinuously for 
all values of l equal to the length of the minimal interval at a given step of the 
elimination process. It maintains a constant value between these steps. In 
other words n(l) is a monotonically decreasing piecewise constant function.  

 



 Guberman & Wojtkowski, Clustering Analysis as a Gestalt Problem 155 

Figure Ap2. n(l) for y [x] 

 

Function n(l) constructed for function y[x] is shown in Figure Ap2. The 
rough description of that function is this: steep slope - long step - another 
steep slope. That kind of function reflects the particular structure of the 
function y[x]. Roughly, this function can be described as a sequence of 
alternating intervals of positive and negative values with similar lengths close 
to l0 (see Figure Ap1d). These intervals are complicated by a number of 
small perturbations. When considering our visual perception, these 
perturbations are just details that can be eliminated in order that we can give 
a rough description of the shape of the function y[x]. That is exactly what the 
DD algorithm is accomplishing. The first steep part of n(l) reflects the fact 
that there are a number of perturbations of similar length. The existence of 
the step reflects the fact that the rest of the objects on the curve (the 
intervals) are three to four times larger than the eliminated perturbations. 
This significant difference in the size of the objects is the reason why, in our 
visual perception, we recognize them as noticeable objects. 

We point to the reader that it is easy to generalize the DD algorithm to 
higher dimensions. For two dimensions the initial function z[x, y] (for 
example, a gray image) can be transformed to a black-and-white image by 
subtracting the moving average and assuming z=+1, when z[x, y]>0, and z=-
1, when z[x, y]<=0. The process of eliminating the smallest interval will be 
replaced by eliminating the spot of smallest area. 

In all dimensions, the existence of long steps and short steep parts in a 
graph of function n(l) reflects the fact that function z is well organized. The 
shape of the graph of n(l) yields meaningful albeit rough description, 
eliminating the elements that our vision interprets as details. 

Afterthoughts1 

                                                      
1
 By Shelia Guberman 
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A number of important issues were clarified during the discussions with 
our colleagues, which I would like to represent to the readers. 

1. Generalization of the 2-dimensional case to the higher dimensions. The 
paper describes a formal procedure (algorithm) that simulates the human 
visual perception of images of a set of dots (i.e. in 2-dimensional space). In 
more precise terms, the algorithm simulates human description of the 
perception. We test this algorithm on a variety of images and verify the 
results. Next we postulate that the principles of description of dot sets in 
higher-dimensional spaces are the same as those for the 2 dimensions. This 
particular postulate cannot be proved by any experimental data for there is 
no human perception in the spaces of dimensions higher than 3. We point 
out that no modifications are required to generalize our algorithm to n 
dimensions. As a matter of fact, the algorithm was constructed in terms that 
are equally applicable to any dimensions. Specifically, the algorithm involves 
only three notions: point, radius and sphere, completely defined for any 
dimension. The function n(r) is a function of one variable. The shape of n(r) 
does not depend on the dimension of the space in which the clusters arise. 
For example, two clusters existing in the 5-dimentional space will generate 
the function n(r) similar to the one shown in fig. 2 that discerns two clusters 
in 2-dimentional space. 

2. Our algorithm is in principle different from all other clustering 
algorithms: it does not use the number of clusters as an input and it does 
not return the number of clusters in a given data. It finds the clusters but it 
does not count them.  

Of course, as soon as the clusters are found one can count them. It 
seems to us that this feature is in a good agreement with our cognition. Let 
us suppose that we have a page on which 13 well-separated clusters of 
points are drawn. In a glance we discern that on this page there is a number 
of well-defined clusters, but we do not know how many. To answer this 
question we have to count them, and that is a different task. 

3. Concerning practical examples in the higher-dimensional space. This is 
both trivial and tricky. We need to distinguish between a set of objects and a 
set of characteristics (parameters) describing each object. When attempting 
a depiction we can ponder this in two ways: change the set of objects 
(keeping intact the description of the objects), or change the set of 
characteristics (keeping intact the set of objects). We wish to point out that 
in our case we can be more specific: the problem of practical clustering is a 
problem of finding an appropriate set of characteristics, which is a problem 
of a specific domain. For example, let us suppose that we have to cluster 
medical data in order to differentiate between two specific diseases. Will we 
use data sets that are not relevant to these diseases (for example, eye 
color)? No, it will make no sense. The data sets are relevant when 
efficacious in differentiating between particular diseases. Thus for specific 
diseases it might be reasonable to use relevant data, for example blood 
pressure, body temperature, EKG, behavioral symptoms etc. That means 
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that each of these parameters is already clustered. Consequently, the 
points representing two different diseases in an n-dimensional space are 
clustered as well. 

What we are stating here is this: the tricky problem is the discovery of the 
set of appropriate parameters. By appropriate, we mean such a set of 
parameters that assures that objects belong to clusters. It turns out that this 
is not an algorithmic puzzle, but mainly a domain problem. That is, the 
parameters problem depends on the domain. The domain can be medical, 
geological, and so on. 

4. “Proximity” and “similarity” in n-dimensional space. The notions of 
“proximity” and “similarity” in psychology are well defined and refer to the 
objects in the real (human) 3-dimensional world (points, lines, cars etc.) as 
observed by the human eye. In the n-dimensional spaces (n>3) human 
(real) geometry does not apply and the notion of “proximity” loses meaning. 
In the n-dimensional space objects are supplanted by representation as the 
abstract points. Since humans do not function in the n-dimensional space 
the notion of “similarity” is expressed by measuring the distance between 
points in an abstract n-dimensional space - the more general sense of 
proximity. For example, the similarity in size will be represented by the proxi-
mity of objects along the “size” axis; similarity in shape, by proximity of 
objects along axes describing the shape of the objects. Therefore, proximity 
(in more general sense), which is measured by the distance between points, 
covers both notions of the real (physical) world - “proximity” and “similarity”. 
This is true not only for n>3, but for the lower dimensions as well, when the 
1- or 2- or 3-dimensional space is an abstract space (temperature, pressure 
etc.). 

Zusammenfassung  

In diesem Artikel erörtern wir das Problem der Bildung von Cluster und fassen es 
als ein gestalttheoretisches (holistisches) Problem auf. In diesem Zusammenhang 
werden wir 

1. den DD-Algorithmus auf den Prozeß anwenden, der eine holistische bzw. 
gestalthafte Wahrnehmung der Clusterbildung simuliert; in Appendix II wird der DD-
Algorithmus in Kürze dargestellt, eine genaue Beschreibung findet man in 
GUBERMAN (1983); 

2. zeigen, daß die algorithmische Simulation des Gestalt-Ansatzes Lösungen für 
eine große Vielfalt an Problemen der Clusterbildung bietet, wobei die Anzahl der 
Cluster nicht ‚a-priori‘ als bekannt vorausgesetzt zu werden braucht; 

3. ein ‚Clustering‘-Maß einführen, das die Anwendung des DD-Algorithmus auf 
Fuzzy-Cluster erlaubt; 

4. den Begriff von ‚Grenzpunkten‘ (der für regelmäßige Gitter wohldefiniert ist) 
verallgemeinern und so eine Lösung des Clusterbildungs-Problems für verbundene 
Cluster ermöglichen; 

5. den Begriff der Cluster-Umgebung einführen und so die Anwendung auf das 
Clusterbildungs-Problem für singuläre Cluster erweitern. 
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Summary 

In this paper we discuss the clustering analysis problem and identify it as a 
Gestalt (holistic) problem. In this context we: 

1. Apply the DD algorithm to the situation that simulates the holistic that is 
Gestalt perception of clustering; DD algorithm is described in detail in GUBERMAN 
(1983), and in brief, in Appendix II; 

2. Show that the algorithmic simulation of Gestalt approach offers a solution to a 
broad variety of clustering problems, where an ‘a priori’ knowledge of the number of 
clusters is not required; 

3. Introduce a measure of ‘clustering’ that permits the application of the DD 
algorithm to fuzzy clusters; 

4. Generalize the notion of ‘border points’ (well defined on regular grids) thus 
resolving the clustering problem for connected clusters; 

5. Introduce the notion of cluster’s environment and expand the solution of 
clustering problem to the case of a single cluster.  
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